The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte.
نویسندگان
چکیده
The anterior-posterior axis of Drosophila originates from two symmetry-breaking steps during early oogenesis. First, one of the two pro-oocytes within the cyst of 16 germline cells is selected to become the oocyte. This cell then comes to lie posterior to the other germline cells of the cyst, thereby defining the polarity of the axis. Here we show that the oocyte reaches the posterior of the cyst in two steps. (1) The cyst flattens as it enters region 2b of the germarium to place the two pro-oocytes in the centre of the cyst, where they contact the posterior follicle cells. (2) One cell is selected to become the oocyte and protrudes into the posterior follicle cell layer when the cyst rounds up on entering region 3. During this germ cell rearrangement, the components of the homophilic cadherin adhesion complex, DE-cadherin, Armadillo and alpha-catenin, accumulate along the border between the oocyte and the posterior follicle cells. Furthermore, the positioning of the oocyte requires cadherin-dependent adhesion between these two cell types, since the oocyte is frequently misplaced when DE-cadherin is removed from either the germline or the posterior follicle cells. We conclude that the oocyte reaches the posterior of the germline cyst because it adheres more strongly to the posterior follicle cells than its neighbours during the germ cell rearrangement that occurs as the cyst moves into region 3. The Drosophila anterior-posterior axis therefore becomes polarised by an unusual cadherin-mediated adhesion between a germ cell and mesodermal follicle cells.
منابع مشابه
Bazooka is required for polarisation of the Drosophila anterior-posterior axis.
The Drosophila anterior-posterior (AP) axis is determined by the polarisation of the stage 9 oocyte and the subsequent localisation of bicoid and oskar mRNAs to opposite poles of the cell. Oocyte polarity has been proposed to depend on the same PAR proteins that generate AP polarity in C. elegans, with a complex of Bazooka (Baz; Par-3), Par-6 and aPKC marking the anterior and lateral cortex, an...
متن کاملOocyte determination and the origin of polarity in Drosophila: the role of the spindle genes.
The two main body axes in Drosophila become polarised as a result of a series of symmetry-breaking steps during oogenesis. Two of the sixteen germline cells in each egg chamber develop as pro-oocytes, and the first asymmetry arises when one of these cells is selected to become the oocyte. Anterior-posterior polarity originates when the oocyte then comes to lie posterior to the nurse cells and s...
متن کاملspindle-C (spn-C) and okra (okr), cause a delay in oocyte determination and a failure to accumulate Grk protein, leading to defects in AP and DV patterning in late oogenesis
Polarization of the anteroposterior (AP) axis of the Drosophila oocyte occurs early in oogenesis, while the presumptive oocyte is still in the germarium (Gonzalez-Reyes and St Johnston, 1998). The dorsoventral (DV) axis is set up much later and relies on transfer of the AP axis polarity from the oocyte to the somatic follicle cells at the posterior end of the oocyte. During stages 4-6 in wild-t...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملThe mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila
BACKGROUND Drosophila axis formation requires a series of inductive interactions between the oocyte and the somatic follicle cells. Early in oogenesis, Gurken protein, a member of the transforming growth factor alpha family, is produced by the oocyte to induce the adiacent follicle cells to adopt a posterior cell fate. These cells subsequently send an unidentified signal back to the oocyte to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 18 شماره
صفحات -
تاریخ انتشار 1998